Actuation System

Standard range

${ }^{\circledR}$ SKF is a registered trademark of the SKF Group.
© SKF Group 2009
The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein.

Publication 6942 EN • April 2009
Printed in Sweden on environmentally friendly paper.
Principles of actuator and pillar selection and application 11
Telescopic pillars 21
Linear actuators 27
Control units 61
Hand switches 67
Other SKF Actuation System products 73

Content

Foreword 7
SKF - the knowledge engineering company 9
1 Principles of linear actuator selection and application 11
Linear actuator definition \& type 12
Definition. 12
Ball screw vs acme screw 13
Performance considerations 13
Limit switch 13
Hall sensor. 13
Friction clutch 13
Ball detent clutch 13
Back-up nut 14
Selection criteria 14
Force 14
Load capacity 14
Speed 14
Stroke and retracted length. 14
Calculation 14
Duty cycle 14
Lifetime 15
Application checklist 16
2 Telescopic pillars 21
TFG 22
3 Linear actuators 27
Matrix series 28
Runner series 36
CAT series 40
IMD3 series 48
ID8A series 52
ID8B series 54
IA4A series 56
IA4B series 58
4 Control units 61
BCU 62
CAED 64
5 Hand switches 67
EHA 1 68
EHA 3 69
CAES 31C 70
6 Other SKF Actuation System products 73

5×5

The SKF brand now stands for more than ever before, and means more to you as a valued customer.

While SKF maintains its leadership as the hallmark of quality bearings throughout the world, new dimensions in technical advances, product support and services have evolved SKF into a truly solutions-oriented supplier, creating greater value for customers.

These solutions encompass ways to bring greater productivity to customers, not only with breakthrough application-specific products, but also through leading-edge design simulation tools and consultancy services, plant asset efficiency maintenance programmes, and the industry's most advanced supply management techniques.

The SKF brand still stands for the very best in rolling bearings, but it now stands for much more.

SKF - the knowledge engineering company

Foreword

This publication provides information on all the standard SKF Actuation System products with clear tables to help the customer select and order the correct product.

Structure of the catalogue

The catalogue is divided into six main chapters, marked with numbered blue tabs in the right margin:

- Chapter 1 provides technical and application recommendations.
- Chapter 2 describes the different telescopic pillars.
- Chapter 3 presents the linear actuator series.
- Chapter 4 and 5 contain information about control units and accessories.
- Chapter 6 is an overview about other SKF Actuation System products.

About the data in this catalogue

All data in this catalogue relate to SKF's state-of-the-art technology and production capabilities as of 2009. The data may differ from that presented in earlier catalogues because of redesign, technological developments, or revised methods of calculation. SKF reserves the right to make continuing improvements to SKF products regarding materials, design and manufacturing methods, as well as changes necessitated by technological developments.

How to use this catalogue

Each product is introduced by providing information such as technical data, dimensional drawings or connecting diagrams, in order to make it easy to select the correct product.

At the end of each section of product information, an ordering key is shown. To determine the product code to be used on the order, do the following: after identifying the type of product required by examining the relevant pages containing the main data, it is necessary to prepare the order code. This may consist of pre-set options, ordering key boxes already filled in (for example: type, color, etc.) and options that can be selected from several items, empty boxes (for example: voltage, stroke length, etc.) In the ordering key, the options are set out under the associated subjects, with the indication of the code or the information to be entered (with the measurement restrictions contained in the associated tables). The sequence of the ordering key is defined by the thin guiding lines that select the corresponding box. The individual ordering key may contain indications or special notes.
For the CAT series, the selection of the item's dynamic load/speed and motor option should be made by use of an additional table with several options located above the ordering key.

An example is given on the next page to show how to prepare the order code for a MAX linear actuator.

NOTE: See the Actuator Range general catalogue and product specific catalogues at www.actuators.skf.com for more complete information and descriptions of the various products briefly described in this catalogue.

Example

Example of an ordering key that has been filled in

SKF - the knowledge engineering company

From the company that invented the self-aligning ball bearing more than 100 years ago, SKF has evolved into a knowledge engineering company that is able to draw on five technology platforms to create unique solutions for its customers. These platforms include bearings, bearing units and seals, of course, but extend to other areas including: lubricants and lubrication systems, critical for long bearing life in many applications; mechatronics that combine mechanical and electronics knowledge into systems for more effective linear motion and sensorized solutions; and a full range of services, from design and logistics support to conditioning monitoring and reliability systems.

Though the scope has broadened, SKF continues to maintain the world's leadership in the design, manufacture and marketing of rolling bearings, as well as complementary products such as radial seals. SKF also holds an increasingly important position in the market for linear motion products, high precision aerospace bearings, machine tool spindles and plant maintenance services.

The SKF Group is globally certified to ISO 14001, the international standard for environmental management, as well as OHSAS 18001, the health and safety management standard. Individual divisions have been approved for quality certification in accordance with ISO 9001 and other customer specific requirements.

With over 100 manufacturing sites worldwide and sales companies in 70 countries, SKF is a truly international corporation. In addition, our distributors and dealers in some 15000 locations around the world, an e-business marketplace and a global distribution system put SKF close to customers for the supply of both products and services. In essence, SKF solutions are available wherever and whenever customers need them. Overall, the SKF brand and the corporation are stronger than ever. As the knowledge engineering company, we stand ready to serve you with world-class product competencies, intellectual resources, and the vision to help you succeed.

Evolving by-wire technology

SKF has a unique expertise in fast-growing by-wire technology, from fly-by-wire, to drive-by-wire, to work-by-wire. SKF pioneered practical fly-by-wire technology and is a close working partner with all aerospace industry leaders. As an example, virtually all aircraft of the Airbus design use SKF by-wire systems for cockpit flight control.

SKF is also a leader in automotive by-wire technology, and has partnered with automotive engineers to develop two concept cars, which employ SKF mechatronics for steering and braking. Further by-wire development has led SKF to produce an all-electric forklift truck, which uses mechatronics rather than hydraulics for all controls.

Principles of actuator and pillar selection and application
Linear actuator definition and type 12
Performance considerations 13
Selection criteria 14
Calculation 14
Application checklist 16
Typical applications 17

Electro-mechanical linear actuators

Electro-mechanical linear actuators enable precise, controlled, and repeatable push/pull movement in linear drive applications (see illustrations below).

Linear actuators serve as efficient, virtually mainte-nance-free, and environmentally friendly alternatives to hydraulic or pneumatic types.

Pushing/pulling

Clamping/gripping

Opening/closing

Tilting

Raising/lowering
Standard versions can handle loads as great as 12 kN, deliver speeds up to $174 \mathrm{~mm} / \mathrm{s}$, and travel as far as 1500 mm . They can be self-contained in aluminum, zinc, or polymer housings and ready-to-mount for easy plug-in operation.

Actuators with modular design and open architecture offer opportunities to choose and integrate components to achieve customized solutions within existing envelopes. Application potential expands with the introduction of technologies for specific purposes, such as Hall sensors, limit switches, potentiometers, friction clutches, or back-up nuts.

Screw-type linear actuators powered by an electric AC or DC motor basically consist of a lead screw (threaded shaft/spindle) with drive nut and push tube. In 90% of the cases, a gearbox between the motor and the screw is also present.

When power is supplied, the motor rotates the lead screw, which causes the drive nut to travel and extend the push tube. Reversing the motor rotation retracts the push tube.

Ball screw vs. acme screw

Traditional types of lead screws include ball screws and acme screws, whose specification will be influenced by an actuator's configuration and load requirements.

Ball screws: These all-steel screw units integrate a screw shaft, nut, ball bearings, and a ball recirculating system to convert rotary motion into smooth, accurate, and reversible linear motion (or torque to thrust). The row of spherical rolling elements is self-contained in a closed system between the nut and screw for a design exhibiting extremely low friction coefficients. The low frictional resistance minimizes wear, improves efficiency, and reduces operating temperature for longer service life.

Ball screw
Ball screws can handle extreme loads, achieve high duty cycles, operate over a wide temperature range, and deliver the precision necessary to equip actuators performing over long periods at high speeds and requiring high acceleration and deceleration capabilities. Brakes usually will be specified for ball screw actuators to prevent backdrive.

Acme screws: These screws transmit torque into linear motion through direct sliding friction similar to a conventional nut-and-bolt combination. A typical assembly consists of a steel screw, plastic or brass nut, and bearing support.

Acme screw
The acme screw design delivers a high friction coefficient ideally suited for "self-locking" applications where an actuator must be prevented from "moving backwards" under the weight of a load. This eliminates any need for a locking mechanism or brake to keep the actuator in position when at rest.

Acme screw actuators accommodate high static and dynamic loads, withstand excessive vibration, operate quietly, and represent cost-effective solutions.

Performance considerations

Beyond the basic fundamentals of actuator operation, applications may require feedback on position and/or direction, limits on motion or travel in a particular direction, or protection against dynamic overload. Enabling technologies have been developed for these purposes.

Limit switch: Its purpose is to limit actuator motion or travel in a particular direction. When activated, the switch opens or closes an electrical contact. When the contact is closed, current will flow through the switch; when the contact is open, no current will flow through the switch. These devices prevent actuators from running into the ends and may allow for the adjustment of stroke length.

Hall sensors: These rotary or linear sensing devices determine the relative position of an actuator. Two sensors detect the changing magnetic field created by a rotating magnet and then relay corresponding output pulses to a control unit to provide the position feedback.

Friction clutch: This component will protect the actuator from mechanical damage when it reaches either of its end positions or when the maximum dynamic load is momentarily exceeded. A friction clutch consists of a series of steel plates engaging a hub and a series of friction rings engaging a housing. Pressure is exerted on the plates and rings by an adjuster acting through a spring and pressure plate. The friction clutch is not intended for use as a load limiter, but only for protection of the actuator and end-use equipment in the event of dynamic overload.

Ball detent clutch: A ball detent type clutch transmits force through hardened balls which rest in detents on the shaft and are held in place with springs. An overtorque / load condition pushes the balls out of their detents, thereby decoupling the lead-screw from the motor.

Back-up nut: This prevents an actuator from collapsing if a drive nut failure occurs. The back-up nut is usually in metal, exhibits greater anti-shear strength than the drive nut, and only makes contact with the threads of the spindle when the threads of the drive nut fail. The back-up nut carries the load and may be able to lower the load (signaling need for repair).

Selection criteria

An actuator's performance will be influenced by a variety of factors intrinsic to an application. An understanding can help select the most suitable actuator design and solution. Relevant factors to evaluate include push/pull force, static and dynamic load capacity, speed, stroke and retracted length, duty cycle, and life calculation.

Force: Push force is the maximum extending force that an electric linear actuator can produce in Newtons (N) and pull force is the maximum retracting force. Some actuators do not produce equal push and pull forces, while others do not permit pull force.

Load capacity: Maximum static load refers to the weight or mass that an actuator can handle when standing still without causing permanent damage or causing the actuator to start "going backwards." (Subjecting an actuator to loads in excess of stated values can risk permanent deformation to some parts.) Maximum dynamic load represents the maximum total weight or mass that the actuator can move. The decisive factor for this value is the size of the motor and the type of gearing. (When an actuator is subject to loads exceeding the stated value, it will simply stop.) Some versions feature an integral mechanical safety device similar to a clutch to protect the motor and gears from damage.

Speed: This represents the rate of travel (when extending or retracting) and is usually measured in mm / s or i / s. Speed can vary under different loads, often depending on the motor. Actuators with DC motors demonstrate a speed variation inversely proportional to the load. Actuators with AC motors move at more consistent speed, which is only slightly affected by the load. Other factors impacting the speed will include the magnitude and/or frequency of the applied voltage, the ambient temperature, and how well an actuator is integrated into the end-use application.

Stroke and retracted length: The stroke describes the length (in millimeters or inches) that an electro-mechanical linear actuator will extend or retract. The retracted length is the shortest distance between the two fixed points on an actuator when the actuator is in its innermost position. The dimensions reflect a measurement from the center of the rear and front mounting holes.

Duty cycle and duty factor: This defines the maximum period during actuator operation without interruption. The corollary duty factor expresses how long an actuator can handle non-stop operation before it overheats or is otherwise damaged. Many variables will affect the duty cycle, including running time, application, design, installation, and components. It is necessary to assess the type of task, its duration, frequency, and repetitiveness when evaluating expected duty cycle.

SKF linear actuators are designed for intermittent operation. Permitted load is related to the duty factor i.e. load must be reduced when the duty factor is increased. In the diagrams, maximum load is shown as a function of duty cycle. Duty factor is defined as amount of time running under load versus total cycle time. If the recommended duty factor is exceeded, the actuator may overheat and be damaged.
Permitted load for DC-actuators at a specific duty factor is expressed in percentage of maximum dynamic load capacity.

$$
\text { Duty factor } \%=\frac{N}{N+R} \times 100
$$

$N \quad=$ running under load
$R \quad=$ rest period
$N+R \quad=$ total cycle time

Example:

An actuator is running with the following cycle, 5 seconds running, 5 seconds rest, 5 seconds running, 15 seconds rest, and so on.

Calculate duty factor and maximum load for this working cycle.

$$
\text { Duty factor }=\frac{5+5}{(5+5)+(5+15)} \times 100=33 \%
$$

The diagram below shows that permitted load ($F_{\text {act }} / F_{\text {rated }}$) is 73% of maximum dynamic load at 33% duty factor.

Max. dynamic load $=5000 \mathrm{~N}$
Permitted load $=0,73 \times 5000=3650$ N.
Life calculation: An actuator's life expectancy is a function of load, stroke length, and how often the overload clutch is operated.

The service life of a ball screw actuator normally will be determined by the L_{10} life of the ball screw. In most cases there is less wear on the worm gear and bearings than on the ball screw.

Under certain circumstances, the life of the motor is shorter than that of the ball screw, however the motor can be easily replaced. Generally, the life of DC-motors is reduced when load and number of starts/stops is increased.

To calculate the basic rating life L_{10} of ball screw, it is sufficient if the dynamic load and actual stroke is known. L_{10} is defined as the life that 90% of a sufficiently large group of apparently identical ball screws can be expected to attain or exceed.

$$
L_{10 \mathrm{ds}}=\frac{500000 \times p}{S} \times\left(\frac{C}{F_{M}}\right)^{3}
$$

$L_{10 \text { d }}=$ basic rating life in double strokes i.e. a stroke from one end position to the other and back again.
$p \quad=$ lead of the ball screw (mm).
$\mathrm{S}=$ actual stroke (mm).
$C=$ ball screw basic dynamic load rating (N).
$F_{M}=$ cubic mean load (N).

In many cases, the magnitude of the load fluctuates. In order to calculate the equivalent screw load, it is first necessary to determine a constant mean load F_{m} which would have the same influence on the ball screw as the actually fluctuating load. A constant mean load can be obtained from the formula below.

$$
F_{M}=\sqrt[3]{\frac{\mathrm{F}_{1}{ }^{3} \times \mathrm{S}_{1}+\mathrm{F}_{2}^{3} \times \mathrm{S}_{2}+\mathrm{F}_{3}{ }^{3} \times \mathrm{S}_{3}+\ldots}{\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\ldots}}
$$

$F_{1}, F_{2}, F_{3} \ldots=$ cubic load (N) during S_{1}, S_{2} and S_{3} partial stroke.

Example:

An actuator with a stroke of 500 mm having a load of 2800 N in one direction of movement and 2100 N in the other. The entire stroke of the actuator is utilized.

$$
F_{M}=\sqrt[3]{\frac{2800^{3} \times 500+2100^{3} \times 500}{500+500}}=2500 \mathrm{~N}
$$

Application checklist

Designing and specifying an electro-mechanical linear actuator begins by assessing as many application factors as possible to make the most appropriate and educated technology choices.

- How much force and in what directions (push, pull, vertical, and/or horizontal) will the actuator need to move?
- How far and how fast will the actuator need to travel?
- How often will the actuator operate and how much time will elapse between operations?
- What is the desired lifetime for the application?
- How will the actuator be mounted and will front and/or back mounts require special configurations?
- Does the application suggest a need for safety mechanisms?
- Will environmental factors (temperature variations, moisture, or vibration) pose a challenge to operation?
- Is space limited?
- What are the power supply options?
- If a motor is used, what type (AC, DC, or special) and what voltage?
- Is feedback required for speed and/or position?
- Are revised specifications likely or anticipated in the future?

Typical applications

Selection guide

| Telescopic pillars | Type | Force | Speed | Stroke length | Motor | Page |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | \mathbf{N} | mm / s | mm | V | No. |
| | TFG | 2500 | 15 to 19 | 200 to 700 | 24 DC | 22 |

Selection guide

$\left.\begin{array}{llllll}\hline \text { Control units } & \text { Type } & \text { Max. motor } \\ \text { connections }\end{array}\right)$

Telescopic pillars

TFG series 22

TELEMAG TFG

Benefits

- Push or pull force
- Compact design
- Fast movement
- Powerful
- Parallel drive

Standards

- EN/IEC 60601-1
- UL 60601-1

Suitable control units and accessories

Dimensional drawing

Connecting diagram TFG10 and TGF50/90

Technical data

	Unit	TFG10	TGF50	TFG90
Max. force* (push or pull)	N	2500	2500	2500
Speed	mm / s	15 to 19	15 to 19	15 to 19
Stroke	mm	200 to 700	200 to 700	200 to 700
Retracted length (3 sections)	mm	S+140 (incl. plate)	S+140 (incl. plate)	S+140 (incl. plate)
Voltage input	V	24 DC	120 AC	230 AC
Current consumption	A	5	1,8	1
Duty cycle intermittent operation	min	$1 \mathrm{~min} . / 9 \mathrm{~min}$.	$1 \mathrm{~min} . / 9 \mathrm{~min}$.	$1 \mathrm{~min} . / 9 \mathrm{~min}$.
Duty cycle short-time operation	min	3	3	3
Ambient temperature	${ }^{\circ} \mathrm{C}$	+10 to +40	+10 to +40	+10 to +40
Protection class	IP	30	30	30
Isolation class	-	SELV	1	1
Weight	kg	8 to 19	8 to 19	8 to 19

Telescopic pillars

TELEMAG TFG

Performance diagrams

Speed-force diagram

Current consumption (A)

Current-force diagram

Offset diagrams

Offset load diagram - 500 mm stroke

Offset load diagram - 300 mm stroke

Offset load diagram - 600 mm stroke

Offset load diagram - 400 mm stroke

Telescopic pillars

TELEMAG TFG

Ordering key

Accessories

	Designation	Order N°
Bottom mounting plate Bore $102,5 \times 102,5 \mathrm{~mm}$	SMT-264363	$\mathrm{M} / 0124814$
Screw for bottom mounting plate M6x30 $(4$ screws required $)$	ZBE-510709	$\mathrm{M} / 0125560$
Mains cable SEV plug 3000 mm , black, $3 \times 0,75 \mathrm{~mm}^{2}$	ZKA-304345	$\mathrm{M} / 0125331$
Mains cable Schuk plug 3000 mm , black, $3 \times 0,75 \mathrm{~mm}^{2}$	ZKA-304346-3000	$\mathrm{M} / 0121729$
Mains cable US plug 3000 mm, black, $3 \times 0,75 \mathrm{~mm}^{2}$	ZKA-304347-3000	$\mathrm{M} / 0121762$
Mains cable British Standard plug 3000 mm , black, $3 \times 0,75 \mathrm{~mm}^{2}$	ZKA-304355-3000	$\mathrm{M} / 0121755$

Notes

Linear actuators

Matrix series 28
Runner series 36
CAT series 40
IMD3 series 48
ID8 series 52
IA4 series 56

Linear actuators

MATRIX MAX3

Benefits

- Long service life
- Silent operation
- Full system with control unit and hand switch
- Synchronization possible
- Compact and aesthetic
- Back-up nut in standard

Suitable control units and accessories

Connecting diagram*

* Only valid for MAX 31

MAX 30 must be operated by a BCU control unit.

Dimensional drawing

Technical data

	Unit	MAX3 A	MAX3 C
Push force (max)	N	8000	3000
Pull force (max)	N	6000	3000
Speed	mm / s	5 to 7	13 to 18
Stroke	mm	100 to 700	100 to 700
Retracted length	mm	S+215/280*	S+215/280*
Voltage	V DC	24	24
Current consumption	A	5,0	5,0
Duty cycle	\%	10 (1 min./9 min.)	10 (1 min./9 min.)
Ambient temperature	${ }^{\circ} \mathrm{C}$	0 to +40	0 to +40
Protection class	IP	665	66 S
Weight (at 200 mm stroke)	kg	4,5	4,0
Color	-	Grey	Grey
$\begin{aligned} * S & \leq 350 \mathrm{~mm} ; \mathrm{L}=\mathrm{S}+215 \\ \mathrm{~S} & >350 \mathrm{~mm} ; \mathrm{L}=\mathrm{S}+280 \end{aligned}$			

Linear actuators

MATRIX MAX3

Performance diagrams

Safety factor load conditions

Linear actuators

MATRIX MAX3

Ordering key

Type
Motor voltage:
24 V DC
24 V DC with integrated current cut-off

Load:
8000 N
3000 N
Stroke (S) / Retracted length (L):
$100 \mathrm{~mm} / 315 \mathrm{~mm}$
100315
$150 \mathrm{~mm} / 365 \mathrm{~mm}$
150365
$200 \mathrm{~mm} / 415 \mathrm{~mm} \quad 200415$
$300 \mathrm{~mm} / 515 \mathrm{~mm}$ 300515
$700 \mathrm{~mm} / 980 \mathrm{~mm}$
700980

Orientation of rear attachment:

Standard
Turned 90°

Options 1:
No option, only valid for actuator "A"
Push force, for actuator version "C"
M
Pull force, for actuator version "C"

Linear actuators

MATRIX MAX6

Benefits

- Long service life
- Silent operation
- Synchronization possible
- Compact and aesthetic
- Back-up nut in standard
- Integrated control unit

Suitable control units and accessories

Connecting diagram

Dimensional drawing

Technical data

	Unit	MAX6 A
Push force (max)	N	8000
Pull force (max)	N	6000
Speed	mm / s	6 to 8
Stroke	mm	100 to 700
Retracted length	mm	$\mathrm{S}+215 / 280^{\star}$
Voltage	VAC	$120 / 230$
Current consumption	A	1,8
Duty cycle	$\%$	$10(1 \mathrm{~min} . / 9 \mathrm{~min})$.
Ambient temperature	${ }^{\circ} \mathrm{C}$	0 to +40
Protection class	IP	66 S
Weight (at 200 mm stroke)	kg	4,8
Color	-	Grey
$* \mathrm{~S} \leq 350 \mathrm{~mm} ; \mathrm{L}=\mathrm{S}+215$		
$\mathrm{~S}>350 \mathrm{~mm} ; \mathrm{L}=\mathrm{S}+280$		

Linear actuators

MAX6

Performance diagrams

Speed-force diagram

Current consumption (A)

Safety factor load conditions

Linear actuators

MAX6

Ordering key

Type	$\mathrm{M} \mid \mathrm{A} \times 6 \square-\mathrm{A}$		A 0	0 0-000
	45			
Motor voltage: $230 \mathrm{VAC} / 50 \mathrm{~Hz}$, integrated low voltage $120 \mathrm{VAC} / 60 \mathrm{~Hz}$, integrated low voltage				
Stroke (S) / Retracted length (L): $100 \mathrm{~mm} / 315 \mathrm{~mm}$ $150 \mathrm{~mm} / 365 \mathrm{~mm}$ $300 \mathrm{~mm} / 515 \mathrm{~mm}$ $700 \mathrm{~mm} / 980 \mathrm{~mm}$		$\begin{aligned} & 100315 \\ & 150365 \\ & 200415 \\ & 300515 \\ & 700980 \end{aligned}$		
Orientation of rear attachment: Standard Turned 90°			$\frac{1}{2}$	

Accessories

Mains cable for MAX6	Plug	Country	Designation	Order N°
Straight cable $3,5 \mathrm{~m}$	Schuko	DE	ZKA-140306-3500	M/0121723
Straight cable $3,5 \mathrm{~m}$	SEV	CH	ZKA-140316-3500	M/0121737
Straight cable $3,5 \mathrm{~m}$	UL	USA	ZKA-140355-3500	M/0121724
Straight cable $3,5 \mathrm{~m}$	Hospital grade	USA	ZKA-140360-3500	M/0121732
Straight cable $3,5 \mathrm{~m}$	British standard	UK	ZKA-140350-3500	M/0121743
Coiled cable 1,2 m / 2,2 m	Schuko	DE	ZKA-140342-1500	M/0121728
Coiled cable 1,2 m/2,2 m	SEV	CH	ZKA-140378-1200	M/0121738
Straight polyurethane cable $3,5 \mathrm{~m}$	SEV	CH	ZKA-140422-3500	M/0121739
Straight polyurethane cable $3,5 \mathrm{~m}$	Schuko	DE	ZKA-140426-3500	M/0121740
Strain relief for mains cable			ZUB-952253	M/0102848
Tool for plugs (Jack/D-Sub/Mains)			ZWS-140375	M/0125322

Linear actuators

Runner

Benefits

- High push/pull force
- Compact design
- Silent operation
- Long service life
- Back-up nut in standard
- High security factor in static

Suitable control units and accessories

Connecting diagram

Dimensional drawing

Technical data

	Unit	RU22
Push force (max)	N	12000
Pull force (max)	N	8000
Speed	mm / s	4 to 7
Stroke	mm	100 to 700
Retracted length	mm	S+215/315*
Voltage	V DC	24
Current consumption	A	7
Duty cycle	\%	10 (1 min./9 min.)
Ambient temperature	${ }^{\circ} \mathrm{C}$	0 to +40
Protection class	IP	X6S
Weight (at 200 mm stroke)	kg	4,7
Color	-	Grey
$\begin{aligned} * & \leq 500 \mathrm{~mm} ; \mathrm{L}=\mathrm{S}+215 \\ \mathrm{~S} & >500 \mathrm{~mm} ; \mathrm{L}=\mathrm{S}+315 \end{aligned}$		

Linear actuators

Runner

Performance diagrams

Speed-force diagram

Current consumption (A)

Current-force diagram

Safety factor load conditions

Linear actuators

Runner

Ordering key

Linear actuators

CAT 33H

Benefits

- Small
- Robust
- Highly efficient
- Friction clutch

Suitable control units and accessories

Connecting diagram

Dimensional drawing

Technical data

	Unit	CAT 33H
Push force (max)	N	1200
Pull force (max)	N	1200
Speed	mm / s	36 to 174
Stroke	mm	100 to 400
Retracted length	mm	S+150
Voltage	V DC	12/24
Current consumption (12 V DC)	A	18
(24V DC)	A	9
Duty cycle	\%	20
Ambient temperature	${ }^{\circ} \mathrm{C}$	-20 to +50
Protection class	IP	65
Weight (at 200 mm stroke)	kg	2,2
Color	-	-

Linear actuators

CAT 33H

Performance diagrams

Duty factor

Linear actuators

CAT 33H

Ordering key

	Dynamic load	Speed (mm/s)		Motor options	
	$\begin{aligned} & 1 \text { 000/50-38 } \\ & 1200 / 56-36 \end{aligned}$	$\begin{aligned} & \text { 600/100-80 } \\ & 900 / 113-79 \end{aligned}$	$\begin{aligned} & 400 / 174-150 \\ & 500 / 174-140 \end{aligned}$	$\begin{aligned} & 12 \mathrm{VDC}, \text { IP65 } \\ & 24 \mathrm{VDC}, \text { IP65 } \end{aligned}$	$\begin{aligned} & \text { C12C } \\ & \text { C24C } \end{aligned}$
	1	2	4		
Ty		$\mathrm{C}\|\mathrm{A}\| \mathrm{T}\|\mathrm{R}\| 3$	$\mathrm{X} \square \mathrm{X}$	A1G1 F/	IT2
Motor assembly: Right					
Stroke (S):					
100 mm			100		
200 mm			200		
300 mm			300		
400 mm			400		
Rear attachment: Fork ear $\varnothing=12,0 \mathrm{~mm}$					
Front attachment: Hole $\varnothing=12,0 \mathrm{~mm}$					
Option for CxxC motors: Straight cable $2,0 \mathrm{~m}$, no plug					

Limit switches

CAXC 33

- Two CAXC needed for inner and outer limit
- The switches reduce the effective stroke length by 20 mm

Product designation

CAXC 33

Dimensional drawing

Connecting diagram
Permissible break power: 3 W
Max. break voltage: 200 VDC
Max. break current: $200 \mathrm{~mA}(\mathrm{DC})$
W $=$ Common
$\mathrm{C}=$ Normally closed
0
0

Permissible break power: 3 W
Max. break voltage: 200 V DC
Max. break current: 200 mA (DC)

0 = Normally opened

Linear actuators

CAT 32B

Benefits

- Small
- Robust
- Highly efficient
- Friction clutch

Suitable control units and accessories

Connecting diagram

Dimensional drawing

Technical data

	Unit	CAT 32B
Push force (max)	N	4000
Pull force (max)	N	4000
Speed	mm / s	12 to 65
Stroke	mm	100 to 400
Retracted length	mm	$\mathrm{S}+206$
Voltage	V DC	$12 / 24$
Current consumption	$(12 \mathrm{~V}$ DC)	A
(24 V DC)	A	18
Duty cycle	$\%$	9
Ambient temperature	${ }^{\circ} \mathrm{C}$	20
Protection class	IP	-20 to +50
Weight (at 200 mm stroke)	kg	65
Color	-	2,6

Linear actuators

CAT 32B

Performance diagrams

Duty factor

Linear actuators

CAT 32B

Ordering key

Limit switches

CAXB 32B

Dimensional drawing

- To avoid running into mechanical end stop, the limit switches should be located approximately 10 mm from respective end stop

Connecting diagram

Ordering key

	C A X B 3 2 B		
Type			
Actuator stroke			
100 mm		100	
200 mm		200	
300 mm		300	
400 mm		400	

Linear actuators

IMD3 series

Features / Benefits

- ACME screw drive
- Extension tube (aluminium)
- Protection tube (aluminium)
- Zinc alloy gear housing
- Powder metal gears
- Self-locking
- Cable length 600 mm without connector

Dimensional drawing

Connecting diagram

Dimensions in mm^{*} Stroke	50	100	150	200	300
Retracted length (L1) *Tolerance: L1 $= \pm 2,0 \mathrm{~mm}$	158	209	260	311	413

Technical data

	Unit	IMD3 10	IMD3 20	IMD3 30	IMD3 40
Push force (max)	N	240	500	750	1000
Pull force (max)	N	240	500	750	1000
Speed	mm / s	24 to 30	13 to 16	8 to 10	6 to 8
Stroke	mm	50	50 to 300	50	100
Retracted length	mm	-*	-*	-*	-*
Voltage	$V D C$	12/24	12/24	12/24	12/24
Current consumption (12 V DC)	A	3,2	3,0	2,8	2,6
(24 V DC)	A	2,0	1,8	1,8	1,6
Duty cycle	\%	25	25	25	25
Ambient temperature	${ }^{\circ} \mathrm{C}$	-15 to +65	-15 to +65	-15 to +65	-15 to +65
Protection class	IP	65	65	65	65
Weight (at 300 mm stroke)	kg	1,5	1,5	1,5	1,5
Color	-	Silver	Silver	Silver	Silver
* see above table					

Linear actuators

IMD3

Performance diagrams

Speed (mm / s)

Speed-force diagram

Current consumption (A)

Current-force diagram

Linear actuators

IMD3

Ordering key

Ordering key

Linear actuators

ID8A series

Features / Benefits

- ACME screw drive
- Extension tube (stainless steel)
- Protection tube (steel), powder coated
- Enhanced corrosion resistance
- Mechanical overload protection (clutch)
- Lubricated for service life
- Robust, designed for tough environment
- Self-locking
- Certified (CE: EN 55011)
- Cable length 130 mm without connector

Connecting diagram

Dimensional drawing

Technical data

Linear actuators

ID8A

Performance diagrams

Speed-force diagram

Current consumption (A)

Current-force diagram

Ordering key

Linear actuators

ID8B series

Features / Benefits

- High efficiency ball screw
- Extension tube (stainless steel)
- Protection tube (steel), powder coated
- Enhanced corrosion resistance
- Mechanical overload protection (clutch)
- Lubricated for service life
- Robust, designed for tough environment

- No back driving
- Certified (CE: EN 55011)
- Cable length 130 mm without connector

Connecting diagram

Dimensional drawing

Technical data

	Unit	ID8B 10	ID8B 20
Push force (max)	N	3500	4500
Pull force (max)	N	3500	4500
Speed	mm / s	22 to 36	13 to 22
Stroke	mm	102-305	102-204
Retracted length	mm	-*	-*
Voltage	\checkmark DC	12/24	12/24
$\begin{array}{ll}\text { Current consumption } & (12 \mathrm{~V} \text { DC) } \\ \text { (24 V DC) }\end{array}$	A	17	13
	A	8	7
	\%	25	25
Ambient temperature	${ }^{\circ} \mathrm{C}$	-26 to +65	-26 to +65
Protection class	IP	65	65
Weight (at 305 mm stroke)	kg	6,5	6,5
Color	-	Black	Black

Linear actuators

ID8B

Performance diagrams

Speed-force diagram

Current consumption (A)

Current-force diagram

Ordering key

Linear actuators

IA4A series

Features / Benefits

- ACME screw drive
- Extension tube (stainless steel)
- Protection tube (steel), powder coated
- Enhanced corrosion resistance
- Mechanical overload protection (clutch)
- Lubricated for service life
- Robust, designed for tough environment
- Self-locking

- Cable length 600 mm without connector

Dimensional drawing

Connecting diagram

Technical data

	Unit	IA4A 10	IA4A 20
Push force (max)	N	1500	2300
Pull force (max)	N	1500	2300
Speed	mm / s	25 to 29	14 to 16
Stroke	mm	102 to 305	102 to 204
Retracted length	mm	-*	-*
Voltage	VAC	230	230
Current consumption (230 V AC)	A	1,3	1,1
Duty cycle	\%	25	25
Ambient temperature	${ }^{\circ} \mathrm{C}$	-26 to +65	-26 to +65
Protection class	IP	65	65
Weight (at 305 mm stroke)	kg	9	9
Color	-	Black	Black

Linear actuators

IA4A

Performance diagrams

Ordering key

Linear actuators

IA4B series

Features / Benefits

- High efficiency ball screw
- Motor with thermal protection
- No back driving
- Extension tube (stainless steel)
- Protection tube (steel), powder coated
- Enhanced corrosion resistance
- Mechanical overload protection (clutch)
- Lubricated for service life

- Robust, designed for tough environment
- No back driving
- Cable length 600 mm without connector

Connecting diagram

Dimensional drawing

Technical data

	Unit	IA4B 10	IA4B 20
Push force (max)	N	4500	6000
Pull force (max)	N	4500	6000
Speed	mm / s	25 to 29	12 to 15
Stroke	mm	102 to 305	102 to 204
Retracted length	mm	-*	-*
Voltage	$\checkmark A C$	230	230
Current consumption (230 VAC)	A	1,3	1,1
Duty cycle	\%	25	25
Ambient temperature	${ }^{\circ} \mathrm{C}$	-26 to +65	-26 to +65
Protection class	IP	65	65
Weight (at 305 mm stroke)	kg	9,5	9,5
Color	-	Black	Black
* see above table. For outdoors application, please contact SKF.			

Linear actuators

IA4B

Performance diagrams

Speed-force diagram

Current-force diagram

Ordering key

Control units

BCU series 62
CAED series 64

Control units

BCU

Benefits

- Compact 3-channel actuator control unit
- Single fault safe
- Overload and over-temperature protection
- Easy to clean
- Low standby current

Suitable actuators and accessories

Connecting diagram

Dimensional drawing

Technical data

	Unit	BCU 5	BCU 8
Motor ports (DIN8)	\#	3	3
Operating device ports (HD15)	\#	1	1
Single fault safety	yes/no	yes	yes
Encoder processing	yes/no	no	no
Input voltage	VAC	120	230
Frequency	Hz	60	50
Input current (max)	A	2,5	1,3
Standby power	W	-	-
Output voltage	V	24	24
Output current (max)	A	7	7
Duty cycle intermittent	min	1/9	1/9
Duty cycle short time	min	2	2
Ambient temperature	${ }^{\circ} \mathrm{C}$	0 to +40	0 to +40
Humidity	\%	5 to 85	5 to 85
Degree of protection	IP	X4	X4
Protection class	-	1	II
Approvals	EN/UL	$\begin{aligned} & \text { UL 60601-1 } \\ & \text { EN 60601.1-2 } \end{aligned}$	$\begin{aligned} & \text { UL 60601-1 } \\ & \text { EN 60601.1-2 } \end{aligned}$
Weight	kg	2,3	2,3

Control units

BCU

Ordering key

Type
Voltage:
120 VAC 50/60 Hz (Class I)
230 VAC 50 Hz (Class II)

Mains power supply cable:
Class II, straight 3,5 m, 2-pole plug, EU (for voltage type 8) 2J
Class II, straight $3,5 \mathrm{~m}, 2$-pole plug, UK (for voltage type 8) 2 H
Class I, straight 3,5 m, 3-pole plug, Hospital grade (for voltage type 5)

Ordering codes

BCU53-2N3100-0000
BCU83-2J3100-0000
BCU83-2H3100-0000

The BCU needs to be parameterized for the connected motors on ports 1 to 3 .

Ordering key

BCU parameterization

Functionality:

All channels individual

Motors:		
TFG	$5,7 \mathrm{~A}$	code E
MAX3	$6,7 \mathrm{~A}$	code M
RU 22	$8,5 \mathrm{~A}$	code R

Soft start/stop:

Medium, start 400 ms, stop 200 ms

Ordering codes

Control units

CAED

Benefits

- Supply voltage 24 VDC
- Output voltage 24 V DC
- Electronic overload protection, factory pre-set at 9 A
- LED indication for overload cut-off
- Easy installation, all connections made at front screw terminal

Suitable actuators and accessories

Connecting diagram

Technical data

Dimensional drawing

Ordering code

CAED 9-24R

	Unit	CAED 9-24R
Motor ports	\#	1
Operating device ports	\#	1
Battery ports	\#	1
Limit switch ports	\#	yes
Single fault safety	y / n	no
Encoder processing	y / n	no
Input voltage	V DC	24 (22-29)
Frequency	Hz	
Input current (max)	A	10
Standby power	W	0,72
Output voltage	V DC	24
Output current (max)	A	9
Duty cycle intermittent	min on/off	10\%
Duty cycle short time	\min on	2
Ambient temperature	${ }^{\circ} \mathrm{C}$	0 to +50
Humidity	\%	-
Protection class	IP	31
Approvals	EN/ UL	EN 60601-1-2, EN 50081-1, EN 50082-1
Dimensions	$\mathrm{mm}(\mathrm{w} \times \mathrm{h} \times \mathrm{d})$	$91 \times 59 \times 35$
Weight	kg	-

Notes

Hand switches

EHA 1 68
EHA 3 69
CAES 31C 70

Hand switches

EHA 1

Benefits

- Robust ergonomic design
- Tactile buttons, clearly marked
- Easy mountable fastening hook
- D-Sub 9 connector
- For MAX6 linear actuator

Dimensional drawing

Ordering key

Technical data

Type	Operating power	Max. operating channels	Prot. class	Colour
EHA 1	$12 / 50$	n°	IP	

Type
Hook:
Hook supplied separately
Cable/Connecting plug:
Coiled 1,3 m / 2,5 m, D-Sub 9-pin plug
Symbols:
1 channel: Arrow up/down

Ordering code

EHA11-21B10N-000

Accessories

Item
Hook with sticker

Hand switches

EHA 3

Benefits

- Robust ergonomic design
- Tactile buttons, clearly marked
- Easy mountable fastening hook
- D-Sub 15 HD connector
- For BCU control unit and TFG pillar

Dimensional drawing

Technical data

Type	Operating power	Max. operating channels	Prot. class	Colour
V DC/mA	n°	IP		
EHA 3	3	67	Grey	
Cable: coiled 1,3-2,3 m Hook with sticker included				

Ordering key

Ordering codes

EHA31-23M10N-000
EHA32-23M2ON-000
EHA33-23M30N-000

Accessories

Item	Order number
Hook with sticker	ZHS-145361

Hand switches

CAES

Benefits

- Robust ergonomic design
- Membrane keyboard
- Clearly marked buttons
- For CAED control unit

Dimensional drawing

Technical data

Ordering code

CAES 31C

Notes

Our full product range

Our full product range

Our full product range

Linear actuators	Type	Max. force push	pull	Max. no load	ed full load	Stroke (S)	Features
		N	N	mm / s	mm / s	mm	
CAR	CAR 22 CAR 32 CAR 40 CARN 32 CCBR 32	$\begin{aligned} & 1500 \\ & 3500 \\ & 6000 \\ & 3500 \\ & 2500 \end{aligned}$	$\begin{array}{ll} 1500 \\ 3500 \\ 6 & 000 \\ 3 & 500 \\ 2500 \end{array}$	30 60 60 N/A N/A	20 40 40 N/A N/A	$\begin{aligned} & 50 \text { to } 300 \\ & 50 \text { to } 700 \\ & 100 \text { to } 700 \\ & 50 \text { to } 700 \\ & 50 \text { to } 700 \end{aligned}$	High duty factor High duty factor High duty factor No motor No motor
MAGFORCE	WSP ASM DSP SKG SKD STW STG STD SKS/SKA SLS	$\begin{aligned} & 2600 \\ & 4000 \\ & 4500 \\ & 15000 \\ & 15000 \\ & 15000 \\ & 15000 \\ & 15000 \\ & 30000 \\ & 50000 \end{aligned}$	$\begin{aligned} & 2600 \\ & 4000 \\ & 4500 \\ & 15000 \\ & 15000 \\ & 15000 \\ & 15000 \\ & 15000 \\ & 30000 \\ & 50000 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 55 \\ & 25 \\ & 12 \\ & 14 \\ & 10 \\ & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 55 \\ & 25 \\ & 12 \\ & 14 \\ & 10 \\ & 45 \\ & 70 \end{aligned}$	100 to 700 100 to 700	Powerful Powerful
ECOMAG	$\begin{aligned} & \text { ECO 20/40 } \\ & \text { ECO 60/80 } \\ & \text { ECO 30/50 } \\ & \text { ECO 70/90 } \end{aligned}$	$\begin{aligned} & 2000 \\ & 6000 \\ & 2000 \\ & 6000 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 2000 \\ & 4000 \end{aligned}$	$\begin{aligned} & 13 \\ & 7 \\ & 13 \\ & 7 \end{aligned}$	$\begin{aligned} & 9 \\ & 4 \\ & 9 \\ & 4 \end{aligned}$	$\begin{aligned} & 50 \text { to } 300 \\ & 50 \text { to } 300 \\ & 50 \text { to } 300 \\ & 50 \text { to } 300 \end{aligned}$	Compact Compact Compact Compact
CALA 36	CALA 36A	600	600	23	12	50 to 200	In-line
MATRIX	MAX 1 MAX 3 MAX 6	$\begin{aligned} & 4000 \\ & 8000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 4000 \\ & 6000 \\ & 6000 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \text { to } 700 \\ & 50 \text { to } 700 \\ & 50 \text { to } 700 \end{aligned}$	Silent operation Silent operation Plug \& play

For more information, please see the Actuator Range general catalogue.

Our full product range

Linear actuators	Type	Max. force push	pull	Max. speed no full load load		Stroke (S)	Features
		N	N	mm / s	mm / s	mm	
CARE	CARE 33H CARE 33M CARE 33A	$\begin{aligned} & 800 \\ & 1400 \\ & 2000 \end{aligned}$	$\begin{aligned} & 800 \\ & 1400 \\ & 2000 \end{aligned}$	$\begin{aligned} & 45 \\ & 22 \\ & 12 \end{aligned}$	$\begin{aligned} & 32 \\ & 16 \\ & 8 \end{aligned}$	50 to 500 50 to 500 50 to 300	Silent operation Silent operation Silent operation
RUNNER	RU 20 RU 21 RU 22 RU 23 RU 24 RU 25	$\begin{aligned} & 8000 \\ & 10000 \\ & 12000 \\ & 8000 \\ & 10000 \\ & 12000 \end{aligned}$	$\begin{aligned} & 8000 \\ & 8000 \\ & 8000 \\ & 8000 \\ & 8000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 10 \\ & 8 \\ & 7 \\ & 15 \\ & 12 \\ & 9 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 4 \\ & 8 \\ & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 100 \text { to } 700 \\ & 100 \text { to } 700 \end{aligned}$	High push force
MAGDRIVE	$\begin{aligned} & \text { MD 22/24 } \\ & \text { MD } 23 / 25 \end{aligned}$	$\begin{aligned} & 6000 \\ & 6000 \end{aligned}$	$\begin{aligned} & 200 \\ & 6000 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 8,5 \\ & 8,5 \end{aligned}$	$\begin{aligned} & 50 \text { to } 700 \\ & 50 \text { to } 700 \end{aligned}$	Slim \& silent Slim \& silent
	$\begin{aligned} & \text { FD-A1 } \\ & \text { FD-A2 } \end{aligned}$	$\begin{aligned} & 6000 \\ & 3000 \end{aligned}$	$\begin{aligned} & 4000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 4,2 \\ & 8,2 \end{aligned}$	$\begin{aligned} & 2,6 \\ & 6,2 \end{aligned}$	$\begin{aligned} & 50 \text { to } 300 \\ & 50 \text { to } 300 \end{aligned}$	Silent operation Silent operation
	$\begin{aligned} & \text { IMD3-05 } \\ & \text { IMD3-10 } \\ & \text { IMD3-20 } \\ & \text { IMD3-30 } \\ & \text { IMD3-40 } \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \\ & 500 \\ & 750 \\ & 1000 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \\ & 500 \\ & 750 \\ & 1000 \end{aligned}$	$\begin{aligned} & 57 \\ & 30 \\ & 16 \\ & 10 \\ & 8 \end{aligned}$	$\begin{aligned} & 45 \\ & 24 \\ & 13 \\ & 8 \\ & 6 \end{aligned}$	50 to 300 50 to 300 50 to 300 50 to 300 50 to 300	Silent operation Silent operation Silent operation Silent operation Silent operation

For more information, please see the Actuator Range general catalogue.

Our full product range

Linear actuators	Type (series)	Max. force push	pull	Max. spee no load	full load mm / s	Stroke (S) standard mm	Features
		N	N	mm / s			
	ID8A-10 ID8A-20 ID8B-05 ID8B-10 ID8B-20	$\begin{aligned} & 1500 \\ & 2500 \\ & 2500 \\ & 3500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 1500 \\ & 2500 \\ & 2500 \\ & 3500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 38 \\ & 20 \\ & 65 \\ & 36 \\ & 22 \end{aligned}$	$\begin{aligned} & 25 \\ & 13 \\ & 45 \\ & 22 \\ & 13 \end{aligned}$	$\begin{aligned} & 102 \text { to } 610 \\ & 102 \text { to } 610 \end{aligned}$	Robust Robust Robust Robust Robust
	IA4A-10 IA4A-20 IA4B-05 IA4B-10 IA4B-20	$\begin{aligned} & 1500 \\ & 2300 \\ & 2300 \\ & 4500 \\ & 6000 \end{aligned}$	$\begin{aligned} & 1500 \\ & 2300 \\ & 2300 \\ & 4500 \\ & 6000 \end{aligned}$	$\begin{aligned} & 29 \\ & 16 \\ & 57 \\ & 29 \\ & 22 \end{aligned}$	$\begin{aligned} & 25 \\ & 14 \\ & 46 \\ & 25 \\ & 13 \end{aligned}$	$\begin{aligned} & 102 \text { to } 610 \\ & 102 \text { to } 610 \end{aligned}$	Robust Robust Robust Robust Robust
	$\begin{aligned} & \text { SJ-255 } \\ & \text { SJ-256 } \\ & \text { SJ }-257 \\ & \text { SJ }-355 \\ & \text { SJ }-356 \\ & \text { SJ }-358 \\ & \text { SJ }-455 \\ & \text { SJ }-456 \\ & \text { SJ }-458 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \\ & 3000 \\ & 3500 \\ & 4000 \\ & 4000 \\ & 4500 \\ & 5000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \\ & 3000 \\ & 3500 \\ & 4000 \\ & 4000 \\ & 4500 \\ & 5000 \end{aligned}$	$\begin{aligned} & 7,2 \\ & 6,0 \\ & 4,5 \\ & 7,2 \\ & 6,0 \\ & 4,5 \\ & 7,2 \\ & 6,0 \\ & 4,5 \end{aligned}$	$\begin{aligned} & 6,6 \\ & 5,5 \\ & 4,0 \\ & 6,6 \\ & 5,5 \\ & 4,0 \\ & 6,6 \\ & 5,5 \\ & 4,0 \end{aligned}$	100 to 600 100 to 600	AC actuator AC actuator AC actuator AaC actuator AC actuator AC actuator AC actuator AC actuator AC actuator

Rotary actuators	Type	Max. torque	Max. speed	Size	Features
		Nm	rpm	mm	
CRAB 17	$\begin{aligned} & \text { CRAB } 17 \\ & \text { CRAB } 17 \end{aligned}$	$\begin{aligned} & 70 \\ & 105 \end{aligned}$	$\begin{aligned} & 8 \\ & 20 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	Compact Compact
CRAB 05	CRAB 05	100	3	86	Compact

For more information, please see the Actuator Range general catalogue.

Our full product range

Control units	Type	Control connections	Max. motor	Input	Output
			n°	V AC/DC	V/A
SCU	SCU	Encoder processing	6	22-40/120/230	24/18 or 30
VCU	VCU	Basic functions	5	120/230	$24 / 7$ or 18
BCU	BCU	Basic functions	3	230/120	24/7
SEM	SEM 1	Basic functions	4	230/120	24/5
CB200	CB200S	Basic functions	3	(100 to 240)*	24/3
	* See ty	available voltage.			
MCU	MCU 1	Basic functions	2	24	$24 / 6$ or 9
For more information, please see the Actuator Range general catalogue.					

Control units	Type	Control connections	Max. motor	Input	Output
			n°	V AC/DC	V/A
LD	$\begin{aligned} & \text { LD-014 } \\ & \text { LD-015 } \\ & \text { LD-015 } \end{aligned}$	Synchronous Synchronous Synchronous	$\begin{aligned} & 4 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 230 / 120 \\ & 230 / 120 \\ & 230 / 120 \end{aligned}$	$\begin{aligned} & 24 / 11 \\ & 24 / 11 \\ & 24 / 9 \end{aligned}$
CAED ANR	$\begin{aligned} & 5-24 R-P O \\ & 9-24 R-P ~ 0 \end{aligned}$	Encoder processing Encoder processing	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 22 \text { to } 28 \\ & 22 \text { to } 28 \end{aligned}$	$\begin{aligned} & 24 / 5 \\ & 24 / 9 \end{aligned}$
CAED	$\begin{aligned} & 3-24 R \\ & 5-24 R \\ & 9-24 R \end{aligned}$	Basic functions Basic functions Basic functions	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 24 / 3 \\ & 24 / 5 \\ & 24 / 9 \end{aligned}$
CAEV	110/220	Basic functions	1	230/120	400/200

Our full product range

| Hand switches | Type | Operating
 power
 motors | Prot. class |
| :--- | :--- | :--- | :--- | :--- | :--- | Colour

For more information, please see the Actuator Range general catalogue.

Our full product range

Desk switches	Type	Operating power	Max. operating motors	Prot. class	Colour
		V D//mA	no	IP	
ST	ST	12/50	3	X0	Black
(a)					
LD	LD	5/50	2	32	Black

For more information, please see the Actuator Range general catalogue.

Desk switch (pneumatic)	Type	Max. operating motors	Air tube	Colour
PAM	PAM	1	-	Anthracite

Guiding tubes	Type	Sections						Stroke	
FRE	FRE	2	3	4	5	6	7		

For more information, please see the Actuator Range general catalogue.

Not able to find your type in this catalogue?

Please fill in this application list and return it to your local sales representative OR by email to actuators@skf.com.

Company: \qquad Name of representative: \qquad
Tel.: \qquad Email: \qquad

Other customer requirements that cannot be defined above:
© SKF is a registered trademark of the SKF Group.
© SKF Group 2009
The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Certain image(s) used under license from Shutterstock.com. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein.

Publication 6942 EN • April 2009
Printed in Sweden on environmentally friendly paper

